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We derive the local and global discretization error of the discrete geometry method (DGM) on a plasmonic structure. Based
on a structured discretization of the computational domain, two cases of field distributions are considered: one with electric field
distributed on primal mesh and magnetic field on dual mesh, the other conversely. The analysis shows that when the magnetic field
is placed on primal mesh, the numerical scheme approximates the continuous problem better than the case when electric field are
placed on primal mesh. The convergence rate for both cases are calculated.

Index Terms—Computational electromagnetic, convergence of numerical methods, discrete geometry method, surface plasmons.

I. Introduction

Plasmonics are defined by the interacting processes between
the electromagnetic waves and the conducting electrons at
metallic interfaces or nanostructures, which leads to an en-
hanced optical near field of sub-wavelength dimension. In re-
cent years, accompanied with the development of nano fabrica-
tion techniques, surface plasmon shows its potential in a large
variety of applications [1]. Plasmonics bring singularities to
solutions of Maxwell’s equations at the metallic interfaces [2].
In another word, the solution is not classical since it has no
strong derivatives at the metallic interfaces. Therefore, it is
necessary to revisit the error estimation results for commonly
used numerical methods, since for most cases, these results are
based on Taylor expansions of the electromagnetic fields. The
local singularities can cause additional error in the expanded
terms. It is important to assure that the discrete approximations
are still consistent to the continuous Maxwell’s system in spite
of the local singularities.

Discrete geometry method (DGM) is based on a differential
geometry interpretation of the Maxwell’s system. Within this
framework, different kinds of finite methods including finite
difference time domain (FDTD) method, finite integrate tech-
niques (FIT) and finite element method (FEM) can be unified
in a general form (1)-(3) ([3], [4]).

CT h = dtd + j (1)
Ce = −dtb (2)

d = Mεe,b = Mµh, j = Mσe. (3)

e, h, b, d and j are the line or surface integrals of electric
field E, magnetic field H, electric flux density D, magnetic
flux density B, and electric current density J respectively, C
is the discrete version of the curl operator and dt denotes
the time derivative. With this algebraic form, (1) and (2)
keep the ”metric-free” nature of Faraday’s law and Ampere’s
law. The metric information is condensed in the constitutive
matrices Mε , Mµ and Mσ in (3). The three constitutive matrices

actually give discretization to the continuous Hodge operator
that maps 1-differential forms to 2-differential forms in E3

space. Thus, no matter how a discrete method is derived, it
is only distinct from other methods in the manner to discretize
the Hodge operator. DGM construct the constitutive matrices
by a physically natural way ([4], [5]). This enables a numerical
scheme that possesses the main advantages of both FDTD/FIT
(diagonal constitutive matrices) and FEM (can be applied on
unstructured mesh).

II. Surface Plasmon Polaritons

Surface plasmon polariton (SPP) is a propagating evanescent
wave along the metallic/dielectric interfaces. The most simple
geometry sustaining SPP is a single, flat interface between a
dielectric, non-absorbing half space with positive real dielectric
constant εd and an adjacent conducting half space with a
dielectric function εm(ω) = εm,r(ω) + iεm,i(ω). The requirement
of metallic character implies εm,r(ω) < 0. The analytical
solution is available for this simple geometry [1].

Ĥy(x, y, z) = Ae−kd(z−z0)eiβx

Êx(x, y, z) = −iA 1
ωε0εd

kde−kd(z−z0)eiβx

Êz(x, y, z) = A β
ωε0εd

e−kd(z−z0)eiβx

, when z > z0 (4)


Ĥy(x, y, z) = Aekm(z−z0)eiβx

Êx(x, y, z) = iA 1
ωε0εm

kmekm(z−z0)eiβx

Êz(x, y, z) = A β
ωε0εm

ekm(z−z0)eiβx

, when z ≤ z0 (5)

The hat indicates that the fields here are time-harmonic compo-
nents of the original electric and magnetic fields. the complex
”wave number” of SPP β takes the value β = k0

√
εmεd
εm+εd

. and km

and kd are related to the dielectric constants by km/kd = −εm/εd.
A demonstration of the solution is shown in Fig. 1. The field
is enhanced at the dielectric/metallic interface and decreases
evanescently in both materials.



Fig. 1. A demonstration of the time harmonic SPP solution.

III. Error Expression and Estimation
Let e∗, h∗, d∗, b∗ and j∗ be the exact solutions of the

maxwell’s system. On the discrete mesh, they fulfill a linear
system as follows:

CT h∗ = dtd∗ + j∗ (6)
Ce∗ = −dtb∗ (7)

d∗ = Mεe∗ + Rε ,b∗ = Mµh∗ + Rµ, j∗ = Mσe∗ + Rσ, (8)

where Rε , Rµ and Rσ are errors on constitutive laws. Let re =

e∗ − e and rh = h∗ − h, and subtract (1)-(3) from (6)-(8), we
can get the following system.

CT rh = iωMεre + Mσre + iωRε + Rσ (9)
Cre = −iωMµrh + iωRµ. (10)

Note that the time dependency is removed by the time-
harmonic assumption. We use the same expressions without
ambiguity. Solving out re from (9) and substituting it into (10)
yields

rh − ω2M−1
µ C(Mε +

Mσ

iω
)−1CT rh = R (11)

with the truncation error of the system defined by

R = M−1
µ Rµ − ω

2M−1
µ C(Mε +

Mσ

iω
)−1(iωRε + Rσ). (12)

We consider a two-dimensional computational domain with
the simple SPP structure mentioned in Sec. II. The domain is
located on the x-z plane and discretized by an uniform Yee’s
Grid with mesh size (hx, hz). We calculate R for two kinds of
field distributions: one with electric components on the primal
mesh and magnetic components on the dual mesh, and the
other conversely. The metallic and dielectric interface is located
on the primal mesh. A geometry demonstration is given in
Fig. 2. For any homogeneous dual pair (L(p)

m , A(d)
m ) in case 1 or

(A(p)
m , L(d)

m ) in case 2, the corresponding diagonal component
(Mε)m,m is calculated by (Mε)m,m = ε |A

(d)
m |

|L(p)
m |

or (Mε)m,m =

ε |A
(p)
m |

|L(d)
m |
. Mσ is defined similarly and Mµ are defined dually

following the same way . Therefore, given any degree of
freedom h locating at least one cell away from the interface, the
local truncation error R can be easily evaluated as O(h2

x + h2
z ).

We then come to the situation when the interface involves.
Consider the edge locating at the interface in case 1 and the
one intersecting the interface in case 2. (marked in green in
Fig. 2). We denote both their indexes by m0. Taking Mε as an
example, its corresponding diagonal components are calculated
by

(Mε)m0,m0 =
εd |A

(d)
1 |

|L(p)|
+
εm|A

(d)
2 |

|L(p)|
(Case 1) (13)

(Mε)m0,m0 =
εdεm|A(p)|

εd |L
(d)
2 | + εm|L

(d)
1 |

(Case 2) (14)

Fig. 2. A demonstration of two kinds of field distribution at the metallic
interface.

We then evaluate the errors Rε , Rσ and Rµ according to (8) with
the exact solutions given in (4) and (5). We apply the Taylor
expansion and cancel out the low order terms to get the order of
the error terms. Furthermore, we evaluate the two subtraction
terms of R in (12), and the results are presented in Table. I.
For both cases, the error with respect to hz is dominant. In case
1, the truncation error is a constant at the interface. Therefore,
the numerical approximation is inconsistent to the continuous
problem in the L∞ sense. And in case 2, the consistency is
fulfilled with a convergence rate of O(hz). In a weaker L2 sense,
however, consistency can also be fulfilled with an order of
O(h1/2

z ) for case 1. Additionaly, we need to remark here that the
calculation of R relies on the fact that the constitutive matrices
are diagonal. For implicit methods as FEM, the evaluation of
12 involves two invertion of large matrices, so that it gets much
more complicated and expensive.

TABLE I
Truncation error at the interface.

First term in (12) Second term in (12)
Case 1 O(h2

x) + O(h2
z ) O(h2

x) + O(1)
Case 2 O(h2

x) + O(hz) O(h2
x) + O(hz)

IV. Conclusion
In this paper, we study the influence of field singularity

to the truncation error of DGM on a plasmonic structure for
two different kinds of discretization. The analysis can guide
the simulation of the plasmonic behavior with DGM on more
complex structures. Details of the calculation and numerical
examples will be presented in the full paper.

Acknowledgement
This work was partially supported by the National Science Foun-

dation of China (No. 51407181) and the Director Foundation of
Institute of Microelectronics of Chinese Academy of Sciences (No.
Y3SZ0701).

References
[1] S. A. Maier, Plasmonics: Fundamentals and Applications., Springer, 2007.
[2] A. Mohammadi, T. Jalali, andM. Agio, Dispersive contour-path algorithm

for the two-dimensional finite-differencetime-domain method. Opt. Express
(16), 2008.

[3] M. Clemens and T. Weiland, Discrete Electromagnetism with the Finite
Integration Technique., Prog. Electromagn. Res.(32), 2011.

[4] A. Bossavit, ’Generalized Finite Differences’ in Computational Electro-
magnetics., Prog. Electromagn. Res. (15), 2011.

[5] Z. Ren and X. Xu, Dual Discrete Geometric Methods in Terms of Scalar
Potential on Unstructured Mesh in Electrostatics., IEEE T. Mag.(50),
2014.


	Introduction
	Surface Plasmon Polaritons
	Error Expression and Estimation
	Conclusion
	References

